rowid,title,contents,year,author,author_slug,published,url,topic 245,Web Content Accessibility Guidelines 2.1—for People Who Haven’t Read the Update,"Happy United Nations International Day of Persons with Disabilities 2018! The United Nations chose “Empowering persons with disabilities and ensuring inclusiveness and equality” as this year’s theme. We’ve seen great examples of that in 2018; for example, Paul Robert Lloyd has detailed how he improved the accessibility of this very website. On social media, US Congressmember-Elect Alexandria Ocasio-Cortez started using the Clipomatic app to add live captions to her Instagram live stories, conforming to success criterion 1.2.4, “Captions (Live)” of the Web Content Accessibility Guidelines (figure 1) …and British Vogue Contributing Editor Sinéad Burke has used the split-screen feature of Instagram live stories to invite an interpreter to provide live Sign Language interpretation, going above and beyond success criterion 1.2.6, “Sign Language (Prerecorded)” of the Web Content Accessibility Guidelines (figure 2). Figure 1: Screenshot of Alexandria Ocasio-Cortez’s Instagram story with live captionsFigure 2: Screenshot of Sinéad Burke’s Instagram story with Sign Language Interpretation That theme chimes with this year’s publication of the World Wide Web Consortium (W3C)’s Web Content Accessibility Guidelines (WCAG) 2.1. In last year’s “Web Content Accessibility Guidelines—for People Who Haven’t Read Them”, I mentioned the scale of the project to produce this update during 2018: “the editors have to update the guidelines to cover all the new ways that people interact with new technologies, while keeping the guidelines backwards-compatible”. The WCAG working group have added 17 success criteria to the 61 that they released way back in 2008—for context, that was 1½ years before Apple released their first iPad! These new criteria make it easier than ever for us web geeks to produce work that is more accessible to people using mobile devices and touchscreens, people with low vision, and people with cognitive and learning disabilities. Once again, let’s rip off all the legalese and ambiguous terminology like wrapping paper, and get up to date. Can your users perceive the information on your website? The first guideline has criteria that help you prevent your users from asking, “What the **** is this thing here supposed to be?” We’ve seven new criteria for this guideline. 1.3.4 Some people can’t easily change the orientation of the device that they use to browse the web, and so you should make sure that your users can use your website in portrait orientation and in landscape orientation. Consider how people slowly twirl presents that they have plucked from under the Christmas tree, to find the appropriate orientation—and expect your users to do likewise with your websites and apps. We’ve had 18½ years since John Allsopp’s revelatory Dao of Web Design enlightened us to “embrace the fact that the web doesn’t have the same constraints” as printed pages, and to “design for this flexibility”. So, even though this guideline doesn’t apply to websites where “a specific display orientation is essential,” such as a piano tutorial, always ask yourself, “What would John Allsopp do?” 1.3.5 You should help the user’s browser to automatically complete–or not complete–form fields, to save the user some time and effort. The surprisingly powerful and flexible autocomplete attribute for input elements should prove most useful here. If you’ve used microformats or microdata to mark up information about a person, the autocomplete attribute’s range of values should seem familiar. I like how the W3’s “Using HTML 5.2 autocomplete attributes” says that autocompleted values in forms help “those with dexterity disabilities who have trouble typing, those who may need more time, and anyone who wishes to reduce effort to fill out a form” (emphasis mine). Um…🙋‍♂️ 1.3.6 I like this one a lot, because it can help a huge audience to overcome difficulties that might prevent them from ever using the web. Some people have cognitive difficulties that affect their memory, focus, attention, language processing, and/or decision-making. Those users often rely on assistive technologies that present information through proprietary symbols, summaries of content, and keyboard shortcuts. You could use ARIA landmarks to identify the regions of each webpage. You could also keep an eye on the W3C’s ongoing work on Personalisation Semantics. 1.4.10 If you were to find a Nintendo Switch and “Super Mario Odyssey” under your Christmas tree, you would have many hours of enjoyably scrolling horizontally and vertically to play the game. On the other hand, if you had to zoom a webpage to 400% so that you could read the content, you might have many hours of frustratedly scrolling horizontally and vertically to read the content. Learned reader, I assume you understand the purpose and the core techniques of Responsive Web Design. I also assume you’re getting up to speed with the new Grid, Flexbox, and Box Alignment techniques for layout, and overflow-wrap. Using those skills, you should make sure that all content and functionality remain available when the browser is 320px wide, without your user needing to scroll horizontally. (For vertical text, you should make sure that all content and functionality remain available when the browser is 256px high, without your user needing to scroll vertically.) You don’t have to do this for anything that would lose meaning if you restructured it into one narrow column. That includes some images, maps, diagrams, video, games, presentations, and data tables. Remember to check how your media queries affect font size: your user might find that text becomes smaller as they zoom into the webpage. So, test this one on real devices, or—better yet—test it with real users. 1.4.11 In “Web Content Accessibility Guidelines—for People Who Haven’t Read Them”, I recommended bookmarking Lea Verou’s Contrast Ratio calculator for checking that text contrasts enough with its background (for success criteria 1.4.3 and 1.4.6), so that more people can read it more easily. For this update, you should make sure that form elements and their focus states have a 3:1 contrast ratio with the colour around them. This doesn’t apply to controls that use the browser’s default styling. Also, you should make sure that graphics that convey information have a 3:1 contrast ratio with the colour around them. 1.4.12 Some people, due to low vision or dyslexia, might need to modify the typography that you agonised over. Research indicates that you should make sure that all content and functionality would remain available if a user were to set: line height to at least 1½ × the font size; space below paragraphs to at least 2 × the font size; letter spacing to at least 0.12 × the font size; word spacing to at least 0.16 × the font size. To test this, check for text overlapping, text hiding behind other elements, or text disappearing. 1.4.13 Sometimes when visiting a website, you hover over—or tab on to—something that unleashes a newsletter subscription pop-up, some suggested “related content”, and/or a GDPR-related pop-up. On a well-designed website, you can press the Esc key on your keyboard or click a prominent “Close” button or “X” button to vanquish such intrusions. If the Esc key fails you, or if you either can’t see or can’t click the “Close” button…well, you’ll probably just close that browser tab. This situation can prove even more infuriating for users with low vision or cognitive disabilities. So, if new content appears when your user hovers over or tabs on to some element, you should make sure that: your user can dismiss that content without needing to move their pointer or tab on to some other element (this doesn’t apply to error warnings, or well-behaved content that doesn’t obscure or replace other content); the new content remains visible while your user moves their cursor over it; the new content remains visible as long as the user hovers over that element or dismisses that content—or until the new content is no longer valid. This doesn’t apply to situations such as hovering over an element’s title attribute, where the user’s browser controls the display of the content that appears. Can users operate the controls and links on your website? The second guideline has criteria that help you prevent your users from asking, “How the **** does this thing work?” We’ve nine new criteria for this guideline. 2.1.4 Some websites offer keyboard shortcuts for users. For example, the keyboard shortcuts for Gmail allow the user to press the ⇧ key and u to mark a message as unread. Usually, shortcuts on websites include modifier keys, such as Ctrl, along with a letter, number, or punctuation symbol. Unfortunately, users who have dexterity challenges sometimes trigger those shortcuts by accident, and that can make a website impossible to use. Also, speech input technology can sometimes trigger those shortcuts. If your website offers single-character keyboard shortcuts, you must allow your user to turn off or remap those shortcuts. This doesn’t apply to single-character keyboard shortcuts that only work when a control, such as drop-down list, has focus. 2.2.6 If your website uses a timeout for some process, you could store the user’s data for at least 20 hours, so that users with cognitive disabilities can take a break or take longer than usual to complete the process without losing their place or losing their data. Alternatively, you could warn the user, at the start of the process, about that the website will timeout after whatever amount of time you have chosen. 2.3.3 If your website has some non-essential animation (such as parallax scrolling) that starts when the user does some particular action, you could allow the user to turn off that animation so that you avoid harming users with vestibular disorders. The prefers-reduced-motion media query currently has limited browser support, but you can start using it now to avoid showing animations to users who select the “Reduce Motion” setting (or equivalent) in their device’s operating system: @media (prefers-reduced-motion: reduce) { .MrFancyPants { animation: none; } } 2.5.1 Some websites let users use multi-touch gestures on touchscreen devices. For example, Google Maps allows users to pinch with two fingers to zoom out and “unpinch” with two fingers to zoom in. Also, some websites allow users to drag a finger to do some action, such as changing the value on an input element with type=""range"", or swiping sideways to the next photograph in a gallery. Some users with dexterity challenges, and some users who use a head pointer, an eye-gaze system, or speech-controlled mouse emulation, might find multi-touch gestures or dragging impossible. You must make sure that your website supports single-tap alternatives to any multi-touch gestures or dragging actions that it provides. For example, if your website lets someone pinch and unpinch a map to zoom in and out, you must also provide buttons that a user can tap to zoom in and out. 2.5.2 This might be my favourite accessibility criterion ever! Did you ever touch or press a “Send” button but then immediately realise that you really didn’t want to send the message, and so move your finger or cursor away from the “Send” button before lifting your finger?! Imagine how many arguments that functionality has prevented. 😌 You must make sure that touching or pressing does not cause anything to happen before the user raises their finger or cursor, or make sure that the user can move their finger or cursor away to prevent the action. In JavaScript, prefer onclick to onmousedown, unless your website has actions that need onmousedown. Also, this doesn’t apply to actions that need to happen as soon as the user clicks or touches. For example, a user playing a “Whac-A-Mole” game or a piano emulator needs the action to happen as soon as they click or touch the screen. 2.5.3 Recently, entrepreneur and social media guru Gary Vaynerchuk has emphasised the rise of audio and voice as output and input. He quotes a Google statistic that says one in five search queries use voice input. Once again, users with disabilities have been ahead of the curve here, having used screen readers and/or dictation software for many years. You must make sure that the text that appears on a form control or image matches how your HTML identifies that form control or image. Use proper semantic HTML to achieve this: use the label element to pair text with the corresponding input element; use an alt attribute value that exactly matches any text that appears in an image; use an aria-labelledby attribute value that exactly matches the text that appears in any complex component. 2.5.4 Modern Web APIs allow web developers to specify how their website will react to the user shaking, tilting, or gesturing towards their device. Some users might find those actions difficult, impossible, or embarrassing to perform. If you make any functionality available when the user shakes, tilts, or gestures towards their device, you must provide form controls that make that same functionality available. As usual, this doesn’t apply to websites that require shaking, tilting, or gesturing; this includes some games and music programmes. John Gruber describes the iPhone’s “Shake to Undo” gesture as “dreadful — impossible to discover through exploration of the on-screen [user interface], bad for accessibility, and risks your phone flying out of your hand”. This accessibility criterion seems to empathise with John: you must make sure that your user can prevent your website from responding to shaking, tilting and/or gesturing towards their device. 2.5.5 Homer Simpson’s telephone famously complained, “The fingers you have used to dial are too fat.” I think we’ve all felt like that when using phones and tablets, particularly when trying to dismiss pop-ups and ads. You could make interactive elements at least 44px wide × 44px high. Apple’s “Human Interface Guidelines” agree: “Provide ample touch targets for interactive elements. Try to maintain a minimum tappable area of 44pt x 44pt for all controls.” This doesn’t apply to links within inline text, or to unsoiled elements. 2.5.6 Expect your users to use a variety of input devices they want, and to change from one to another whenever they please. For example, a user with a tablet and keyboard might jab icons on the screen while typing on the keyboard, or a user might dictate text while alone and then type on a keyboard when a colleague arrives. You could make sure that your website allows your users to use whichever available input modality they choose. Once again, this doesn’t apply to websites that require a specific modality; this includes typing tutors and music programmes. Can users understand your content? The third guideline has criteria that help you prevent your users from asking, “What the **** does this mean?” We’ve no new criteria for this guideline. Have you made your website robust enough to work on your users’ browsers and assistive technologies? The fourth and final guideline has criteria that help you prevent your users from asking, “Why the **** doesn’t this work on my device?” We’ve one new criterion for this guideline. 4.1.3 Sometimes you need to let your user know the status of something: “Did it work OK? What was the error? How far through it are we?” However, you should avoid making your user lose their place on the webpage, and so you should let them know the status without opening a new window, focusing on another element, or submitting a form. To do this properly for assistive technology users, choose the appropriate ARIA role for the new content; for example: if your user needs to know, “Did it work OK?”, add role=""status”; if your user needs to know, “What was the error?”, add role=""alert”; if you user needs to know, “How far through it are we?”, add role=""log"" (for a chat window) or role=""progressbar"" (for, well, a progress bar). Better design for humans My favourite of Luke Wroblewski’s collection of Design Quotes is, “Design is the art of gradually applying constraints until only one solution remains,” from that most prolific author, “Unknown”. I’ve always viewed the Web Content Accessibility Guidelines as people-based constraints, and liked how they help the design process. With these 17 new web content accessibility criteria, go forth and create solutions that more people than ever before can use. Spending those book vouchers you got for Christmas What next? If you’re looking for something to do to keep you busy this Christmas, I thoroughly recommend these four books for increasing your accessibility expertise: “Pro HTML5 Accessibility” by Joshue O Connor (Head of Accessibility (Interim) at the UK Government Digital Service, Director of InterAccess, and one of the editors of the Web Content Accessibility Guidelines 2.1): Although this book is six years old—a long time in web design—I find it an excellent go-to resource. It begins by explaining how people with disabilities use the web, and then expertly explains modern HTML in that context. “A Web for Everyone—Designing Accessible User Experiences” by Sarah Horton (the Paciello Group’s UX Strategy Lead) and Whitney Quesenbery (the Center for Civic Design’s co-director): This book covers the Web Content Accessibility Guidelines 2.0, the principles of Universal Design, and design thinking. Its personas for Accessible UX and its profiles of well-known industry figures—including some 24ways authors—keep its content practical and relevant throughout. “Accessibility For Everyone” by Laura Kalbag (Ind.ie’s co-founder and designer, and 24ways author): This book is just over a year old, and so serves as a great resource for up-to-date coverage of guidelines, laws, and accessibility features of operating systems—as well as content, design, coding, and testing. The audiobook, which Laura narrates, can help you and your colleagues go from having little or no understanding of web accessibility, to becoming familiar with all aspects of web accessibility—in less than four hours. “Just Ask: Integrating Accessibility Throughout Design” by Shawn Lawton Henry (the World Wide Web Consortium (W3C)’s Web Accessibility Initiative (WAI)’s Outreach Coordinator): Although this book is 11½ years old, the way it presents accessibility as part of the User-Centered Design process is timeless. I found its section on Usability Testing with people with disabilities particularly useful.",2018,Alan Dalton,alandalton,2018-12-03T00:00:00+00:00,https://24ways.org/2018/wcag-for-people-who-havent-read-the-update/,ux 273,There’s No Formula for Great Designs,"Before he combined them with fluid images and CSS3 media queries to coin responsive design, Ethan Marcotte described fluid grids — one of the most enjoyable parts of responsive design. Enjoyable that is, if you like working with math(s). But fluid grids aren’t perfect and, unless we’re careful when applying them, they can sometimes result in a design that feels disconnected. Recapping fluid grids If you haven’t read Ethan’s Fluid Grids, now would be a good time to do that. It centres around a simple formula for converting pixel widths to percentages: (target ÷ context) × 100 = result How does that work in practice? Well, take that Fireworks or Photoshop comp you’re working on (I call them static design visuals, or just visuals.) Of course, everything on that visual — column divisions, inline images, navigation elements, everything — is measured in pixels. Now: Pick something in the visual and measure its width. That’s our target. Take that target measurement and divide it by the width of its parent (context). Multiply what you’ve got by 100 (shift two decimal places). What you’re left with is a percentage width to drop into your style sheets. For example, divide this 300px wide sidebar division by its 948px parent and then multiply by 100: your original 300px is neatly converted to 31.646%. .content-sub { width : 31.646%; /* 300px ÷ 948px = .31646 */ } That formula makes it surprisingly simple for even die-hard fixed width aficionados to convert their visuals to percentage-based, fluid layouts. It’s a handy formula for those who still design using static visuals, and downright essential for those situations where one person in an organization designs in Fireworks or Photoshop and another develops with CSS. Why? Well, although I think that designing in a browser makes the best sense — particularly when designing for multiple devices — I’ll wager most designers still make visuals in Fireworks or Photoshop and use them for demonstrations and get feedback and sign-off. That’s OK. If you haven’t made the transition to content-out designing in a browser yet, the fluid grids formula helps you carry on pushing pixels a while longer. You can carry on moving pixel width measurements from your visuals to your style sheets, too, in the same way you always have. You can be precise to the pixel and even apply a grid image as a CSS background to help you keep everything lined up perfectly. Once you’re done, and the fixed width layout in the browser matches your visual, loop back through your style sheets and convert those pixels to percentages using the fluid grids formula. With very little extra work, you’ll have a fluid implementation of your fixed width layout. The fluid grids formula is simple and incredibly effective, but not long after I started working responsively I realized that the formula shouldn’t (always) be a one-fix, set-and-forget calculation. I noticed that unless we compensate for problems it sometimes creates, the result can be a disconnected design. Staying connected Good design relies on connectedness, a feeling of natural balance between elements and the grid they’re placed on. Give an element greater prominence or position in a visual hierarchy and you can fundamentally alter the balance and sometimes the meaning of a design. Different from a browser’s page zooming feature — where images, text and overall layout change size by the same ratio — fluid grids flex a layout in response to a window or device width. Columns expand and contract, and within them fluid media (images and videos) can also change size. This can be one of the most impressive demonstrations of responsive design. But not every element within a fluid grid can change size along with the window or device width. For example, type size and leading won’t change along with a column’s width. When columns and elements within them change width, all too easily a visual hierarchy can be broken and along with it the relationship between element sizes and the outer window or viewport. This can happen quickly if you make just one set of fluid grid calculations and use those percentages across every screen width, from smartphones through tablets and up to large desktops. The answer? Make several sets of fluid grids calculations, each one at a significant window or device width breakpoint. Then apply those new percentages, when needed, to help keep elements in proportion and maintain balance and connectedness. Here’s how I work. Avoiding disconnection I’ve never been entirely happy with grid frameworks such as the 960 Grid System, so I start almost every project by creating a custom grid to inform my layout decisions. Here’s a plain version of a grid from a recent project that I’ll use as an illustration. This project’s grid comprises 84px columns and 24px gutters. This creates an odd number of columns at common tablet and desktop widths, and allows for 300px fixed width assets — useful when I need to fit advertising into a desktop layout’s sidebar. Showing common advertising sizes (Larger image) For this project I chose three 320 and Up breakpoints above 320px and, after placing as many columns as would fit those breakpoint widths, I derived three content widths: Breakpoint Columns Content width 768px 7 732px 992px 9 948px 1,382px 13 1,380px Here’s my grid again, this time with pixel measurements and breakpoints overlaid. Showing pixel measurements and breakpoints (Larger image) Now cast your mind back to the fluid grids calculation I made earlier. I divided a 300px element by 948px and arrived at 31.646%. For some elements it’s possible to use that percentage across all screen widths, but others will feel too small in relation to a narrower 768px and too large inside 1,380px. To help maintain connectedness, I make a set of fluid grids calculations based on each of the content widths I established earlier. Now I can shift an element’s percentage width up or down when I switch to a new breakpoint and content width. For example: 300px is 40.984% of 732px 300px is 31.646% of 948px 300px is 21.739% of 1,380px I’ll add all those fluid grid percentages to my grid image and save it for quick reference. Showing percentages at all breakpoints (Larger image) Then I can apply those different percentage widths to elements at each breakpoint using CSS3 media queries. For example, that sidebar division again: /* 732px, 7-column width */ @media only screen and (min-width: 768px) { .content-sub { width : 40.983%; /* 300px ÷ 732px = .40983 */ } } /* 948px, 9-column width */ @media only screen and (min-width: 992px) { .content-sub { width : 31.645%; /* 300px ÷ 948px = .31645 */ } } /* 1380px, 13-column width */ @media only screen and (min-width: 1382px) { .content-sub { width : 21.739%; /* 300px ÷ 1380px = .21739 */ } } The number of changes you make to a layout at different breakpoints will, of course, depend on the specifics of the design you’re working on. Yes, this is additional work, but the result will be a layout that feels better balanced and within which elements remain in harmony with each other while they respond to new screen or device widths. Putting the design in responsive web design Until now, many of the conversations around responsive web design have been about aspects of technical implementation, rather than design. I believe we’re only beginning to understand what’s involved in designing responsively. In future, we’ll likely be making design decisions not just about proportions but also about responsive typography. We’ll also need to learn how to adapt our designs to device characteristics such as touch targets and more. Sometimes we’ll make decisions to improve function, other times because they make a design ‘feel’ right. You’ll know when you’ve made a right decision. You’ll feel it. After all, there really is no formula for making great designs.",2011,Andy Clarke,andyclarke,2011-12-23T00:00:00+00:00,https://24ways.org/2011/theres-no-formula-for-great-designs/,ux 96,Unwrapping the Wii U Browser,"The Wii U was released on 18 November 2012 in the US, and 30 November in the UK. It’s the first eighth generation home console, the first mainstream second-screen device, and it has some really impressive browser specs. Consoles are not just for games now: they’re marketed as complete entertainment solutions. Internet connectivity and browser functionality have gone from a nice-to-have feature in game consoles to a selling point. In Nintendo’s case, they see it as a challenge to design an experience that’s better than browsing on a desktop. Let’s make a browser that users can use on a daily basis, something that can really handle everything we’ve come to expect from a browser and do it more naturally. Sasaki – Iwata Asks on Nintendo.com With 11% of people using console browsers to visit websites, it’s important to consider these devices right from the start of projects. Browsing the web on a TV or handheld console is a very different experience to browsing on a desktop or a mobile phone, and has many usability implications. Console browser testing When I’m testing a console browser, one of the first things I do is run Niels Leenheer’s HTML5 test and Lea Verou’s CSS3 test. I use these benchmarks as a rough comparison of the standards each browser supports. In October, IE9 came out for the Xbox 360, scoring 120/500 in the HTML5 test and 32% in the CSS3 test. The PS Vita also had an update to its browser in recent weeks, jumping from 58/500 to 243/500 in the HTML5 test, and 32% to 55% in the CSS3 test. Manufacturers have been stepping up their game, trying to make their browsing experiences better. To give you an idea of how the Wii U currently compares to other devices, here are the test results of the other TV consoles I’ve tested. I’ve written more in-depth notes on TV and portable console browsers separately. Year of releaseHTML5 scoreCSS3 scoreNotes Wii U2012258/50048%Runs a Netfront browser (WebKit). Wii200689/500Wouldn’t runRuns an Opera browser. PS3200668/50038%Runs a Netfront browser (WebKit). Xbox 3602005120/50032%A browser for the Xbox (IE9) was only recently released in October 2012. The Kinect provides voice and gesture support. There’s also SmartGlass, a second-screen app for platforms including Android and iOS. The Wii U browser is Nintendo’s fifth attempt at a console browser. Based on these tests, it’s already looking promising. Why console browsers used to suck It takes a lot of system memory to run a good browser, and the problem of older consoles is that they don’t have much memory available. The original Nintendo DS needs a memory expansion pack just to run the browser, because the 4MB it has on board isn’t enough. I noticed that even on newer devices, some sites fail to load because the system runs out of memory. The Wii came out six years ago with an Opera browser. Still being used today and with such low resources available, the latest browser features can’t reasonably be supported. There’s also pressure to add features such as tabs, and enable gamers to use the browser while a game is paused. Nintendo’s browser team have the advantage of higher specs to play with on their new console (1GB of memory dedicated to games, 1GB for the system), which makes it easier to support the latest standards. But it’s still a challenge to fit everything in. …even though we have more memory, the amount of memory we can use for the browser is limited compared to a PC, so we’ve worked in ways that efficiently allocates the available memory per tab. To work on this, the experience working on the browser for the Nintendo 3DS system under a limited memory constraint helped us greatly. Sasaki – Iwata Asks on Nintendo.com In the box The Wii U consists of a console unit which plugs into a TV (the first to support HD), and a wireless controller known as a gamepad. The gamepad is a lot bigger than typical TV console controllers, and it has a touchscreen on the front. The touchscreen is resistive, responding to pressure rather than electrical current. It’s intended to be used with a stylus (provided) but fingers can be used. It might look a bit like one, but the gamepad isn’t a portable console designed to be taken out like the PS Vita. The gamepad can be used as a standalone screen with the TV switched off, as long as it’s within range of the console unit – it basically piggybacks off it. It’s surprisingly lightweight for its size. It has a wealth of detectors including 9-axis control. Sensors wake the device from sleep when it’s picked up. There’s also a camera on the front, and a headphone port and speakers, with audio coming through both the TV and the gamepad giving a surround sound feel. Up to six tabs can be opened at once, and the browser can be used while games are paused. There’s a really nice little feature here – the current game’s name is saved as a search option, so it’s really quick to look up contextual content such as walk-throughs. Controls Only one gamepad can be used to control the browser, but if there are Wiimotes connected, they can be used as pointers. This doesn’t let the user do anything except point (they each get a little hand icon with a number on it displayed on the screen), but it’s interesting that multiple people can be interacting with a site at once. See a bigger version The gamepad can also be used as a simple TV remote control, with basic functions such as bringing up the programme guide, adjusting volume and changing channel. I found the simplified interface much more usable than a full-featured remote control. I’m used to scrolling being sluggish on consoles, but the Wii U feels almost as snappy as a desktop browser. Sites load considerably faster compared with others I’ve tested. Tilt-scroll Holding down ZL and ZR while tilting the screen activates an Instapaper-style tilt to scroll for going up and down the page quickly, useful for navigating very long pages. Second screen The TV mirrors most of what’s on the gamepad, although the TV screen just displays the contents of the browser window, while the gamepad displays the site along with the browser toolbar. When the user with the gamepad is typing, the keyboard is hidden from the TV screen – there’s just a bit of text at the top indicating what’s happening on the gamepad. Pressing X draws an on-screen curtain over the TV, hiding the content that’s on the gamepad from the TV. Pressing X again opens the curtains, revealing what’s on the gamepad. Holding the button down plays a drumroll before it’s released and the curtains are opened. I can imagine this being used in meetings as a fun presentation tool. In a sense, browsing is a personal activity, but you get the idea that people will be coming and going through the room. When I first saw the curtain function, it made a huge impression on me. I walked around with it all over the company saying, “They’ve really come up with something amazing!” Iwata – Iwata Asks on Nintendo.com Text Writing text Unlike the capacitive screens on smartphones, the Wii U’s resistive screen needs to be pressed harder than you’re probably used to for registering a touch event. The gamepad screen is big, which makes it much easier to type on this device than other handheld consoles, even without the stylus. It’s still more fiddly than a full-sized keyboard though. When you’re designing forms, consider the extra difficulty console users experience. Although TV screens are physically big, they are typically viewed from further away than desktop screens. This makes readability an issue, so Nintendo have provided not one, but four ways to zoom in and out: Double-tapping on the screen. Tapping the on-screen zoom icons in the browser toolbar. Pressing the + and - buttons on the device. Moving the right analogue stick up and down. As well as making it easy to zoom in and out, Nintendo have done a few other things to improve the reading experience on the TV. System font One thing you’ll notice pretty quickly is that the browser lacks all the fonts we’re used to falling back to. Serif fonts are replaced with the system’s sans-serif font. I couldn’t get Typekit’s font loading method to work but Fontdeck, which works slightly differently, does display custom fonts. The system font has been optimised for reading at a distance and is easy to distinguish because the lowercase e has a quirky little tilt. Don’t lose :focus Using the D-pad to navigate is similar to using a keyboard. Individual links are focused on, with a blue outline drawn around them. The recently redesigned An Event Apart site is an example that improves the experience for keyboard and D-pad users. They’ve added a yellow background colour to links on focus. It feels nicer than the default blue outline on its own. Media This year, television overtook PCs as the primary way to watch online video content. TV is the natural environment for video, and 42% of online TVs in the US are connected to the internet via a console. Unfortunately, the